Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 2 of 2 results
1.

Photoactivatable oncolytic adenovirus for optogenetic cancer therapy.

blue VVD A549 Hep G2 human IPSCs HUVEC mouse in vivo NCI-H1299
Cell Death Dis, 23 Jul 2020 DOI: 10.1038/s41419-020-02782-6 Link to full text
Abstract: Virotherapy using oncolytic adenovirus is an effective anticancer strategy. However, the tumor selectivity of oncolytic adenoviruses is not enough high. To develop oncolytic adenovirus with a low risk of off-tumor toxicity, we constructed a photoactivatable oncolytic adenovirus (paOAd). In response to blue light irradiation, the expression of adenoviral E1 genes, which are necessary for adenoviral replication, is induced and replication of this adenovirus occurs. In vitro, efficient lysis of various human cancer cell lines was observed by paOAd infection followed by blue light irradiation. Importantly, there was no off-tumor toxicity unless the cells were irradiated by blue light. In vivo, tumor growth in a subcutaneous tumor model and a mouse model of liver cancer was significantly inhibited by paOAd infection followed by blue light irradiation. In addition, paOAd also showed a therapeutic effect on cancer stem cells. These results suggest that paOAd is useful as a safe and therapeutically effective cancer therapy.
2.

Generation of Optogenetically Modified Adenovirus Vector for Spatiotemporally Controllable Gene Therapy.

blue CRY2/CIB1 mouse in vivo PC-3 Endogenous gene expression
ACS Chem Biol, 12 Jan 2018 DOI: 10.1021/acschembio.7b01058 Link to full text
Abstract: Gene therapy is expected to be utilized for the treatment of various diseases. However, the spatiotemporal resolution of current gene therapy technology is not high enough. In this study, we generated a new technology for spatiotemporally controllable gene therapy. We introduced optogenetic and CRISPR/Cas9 techniques into a recombinant adenovirus (Ad) vector, which is widely used in clinical trials and exhibits high gene transfer efficiency, to generate an illumination-dependent spatiotemporally controllable gene regulation system (designated the Opt/Cas-Ad system). We generated an Opt/Cas-Ad system that could regulate a potential tumor suppressor gene, and we examined the effectiveness of this system in cancer treatment using a xenograft tumor model. With the Opt/Cas-Ad system, highly selective tumor treatment could be performed by illuminating the tumor. In addition, Opt/Cas-Ad system-mediated tumor treatment could be stopped simply by turning off the light. We believe that our Opt/Cas-Ad system can enhance both the safety and effectiveness of gene therapy.
Submit a new publication to our database